题目内容
| 1 |
| MN |
| 1 |
| AC |
| 1 |
| BC |
| 1 |
| 4 |
分析:(1)用平行线分线段成比例定理;
(2)根据相似三角形的性质,化简分式可得;
(3)要利用二次函数最值即可求解.
(4)根据③直接得出MN≠
AB.
(2)根据相似三角形的性质,化简分式可得;
(3)要利用二次函数最值即可求解.
(4)根据③直接得出MN≠
| 1 |
| 2 |
解答:解:(1)∵CD∥BE,
∴△CND∽△ENB,
∴
=
①
∵CE∥AD,
∴△AMD∽△EMC,
∴
=
②
∵等腰直角△ACD和△BCE,
∴CD=AD,BE=CE,
∴
=
,
∴MN∥AB;
(2)∵CD∥BE,
∴△CND∽△ENB,
∴
=
,
设
=
=k,
则CN=kNE,DN=kNB,
∵MN∥AB,
∴△EMN∽△EAC,
∴
=
=
=
,
=
=
=
,
∴
+
=1,
∴
=
+
;
(3)∵
=
+
,
∴MN=
=
,
设AB=a(常数),AC=x,
则MN=
x(a-x)=-
(x-
a)2+
a≤
a;
(4)由③得出MN≠
AB,故④错误.
故答案为:①②③.
∴△CND∽△ENB,
∴
| CN |
| NE |
| DC |
| BE |
∵CE∥AD,
∴△AMD∽△EMC,
∴
| AM |
| ME |
| AD |
| CE |
∵等腰直角△ACD和△BCE,
∴CD=AD,BE=CE,
∴
| CN |
| NE |
| AM |
| ME |
∴MN∥AB;
(2)∵CD∥BE,
∴△CND∽△ENB,
∴
| CN |
| NE |
| DN |
| NB |
设
| CN |
| NE |
| DN |
| NB |
则CN=kNE,DN=kNB,
∵MN∥AB,
∴△EMN∽△EAC,
∴
| MN |
| AC |
| NE |
| CE |
| NE |
| NE+CN |
| 1 |
| k+1 |
| MN |
| BC |
| DN |
| DB |
| DN |
| DN+NB |
| k |
| k+1 |
∴
| MN |
| AC |
| MN |
| BC |
∴
| 1 |
| MN |
| 1 |
| AC |
| 1 |
| BC |
(3)∵
| 1 |
| MN |
| 1 |
| AC |
| 1 |
| BC |
∴MN=
| AC•BC |
| AC+BC |
| AC•BC |
| AB |
设AB=a(常数),AC=x,
则MN=
| 1 |
| a |
| 1 |
| a |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
(4)由③得出MN≠
| 1 |
| 2 |
故答案为:①②③.
点评:此题考查了三角形相似的判定与性质、平行线分线段成比例定理、比例变形及二次函数的应用,综合性比较强.
练习册系列答案
相关题目
| A、AE=BE | B、AD=BD | C、AB=AC | D、ED=AD |
如图,已知C是线段AB的中点,则CD等于( )

| A、AD-BD | ||
B、
| ||
C、
| ||
D、AD-
|