题目内容
观察下列各式的规律,解决下列问题:
=1-
,
=
-
,
=
-
,
=
-
…从计算结果中找规律.
(1)用n表示第n个等式(n≥1)
=
-
=
-
;
(2)利用规律计算
+
+
+
+…+
.
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4×5 |
| 1 |
| 4 |
| 1 |
| 5 |
(1)用n表示第n个等式(n≥1)
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(2)利用规律计算
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| 2009×2010 |
分析:(1)观察一系列等式,得到一般性规律,表示出即可;
(2)利用得出的规律化简原式,合并即可得到结果.
(2)利用得出的规律化简原式,合并即可得到结果.
解答:解:(1)根据题意得:
=
-
;
(2)根据题意得:原式=1-
+
-
+
-
+
-
+…+
-
=1-
=
.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(2)根据题意得:原式=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 2009 |
| 2010 |
点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目