题目内容
如图,点A在半径为3的⊙O内,OA=
,P为⊙O上一点,当∠OPA取最大值时,PA的长等于
- A.

- B.

- C.

- D.

B
分析:当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.
解答:在△OPA中,当∠OPA取最大值时,OA取最大值,
∴PA取最小值,
又∵OA、OP是定值,
∴PA⊥OA时,PA取最小值;
在直角三角形OPA中,OA=
,OP=3,
∴PA=
=
.
故选B.
点评:本题考查了解直角三角形.解答此题的关键是找出“当PA⊥OA时,PA取最小值”即“PA⊥OA时,∠OPA取最大值”这一隐含条件.
分析:当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.
解答:在△OPA中,当∠OPA取最大值时,OA取最大值,
∴PA取最小值,
又∵OA、OP是定值,
∴PA⊥OA时,PA取最小值;
在直角三角形OPA中,OA=
∴PA=
故选B.
点评:本题考查了解直角三角形.解答此题的关键是找出“当PA⊥OA时,PA取最小值”即“PA⊥OA时,∠OPA取最大值”这一隐含条件.
练习册系列答案
相关题目
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、2
|