题目内容
如图, ∠1与∠2是对顶角的是( )
A. B. C. D.
如图,已知以E(3,0)为圆心,5为半径的☉E与x轴交于A,B两点,与y轴交于C点,抛物线y=ax2+bx+c(a≠0)经过A,B,C三点,顶点为F.
(1)求A,B,C三点的坐标;
(2)求抛物线的解析式及顶点F的坐标;
(3)已知M为抛物线上的一动点(不与C点重合),试探究:①若以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;
②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与☉E的位置关系,并说明理由.
已知不等式ax+b<0的解集是x<-2,下列图象有可能是直线y=ax+b的是( )
折叠三角形纸片ABC,使点A落在BC边上的点F,且折痕DE∥BC,若∠A=75°,∠C=60°,则∠BDF=____________________________
如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于( )
A. 23° B. 16° C. 20° D. 26°
如图,反比例函数的图像和一次函数y2=ax+b的图像交于A(3,4)、B(—6,n)。
(1)求两个函数的解析式;
(2)观察图像,写出当x为何值时y1>y2?
(3)C、D分别是反比例函数第一、三象限的两个分支上的点,且以A、B、C、D为顶点的四边形是平行四边形.请直接写出C、D两点的坐标.
如图,将平行四边形沿对折,使点落在点处,若,则到的距离为____________.
如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,
(1)试说明△ABC是等腰三角形;
(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),
①若△DMN的边与BC平行,求t的值;
②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.
在下面的四个几何体中,左视图与主视图不相同的几何体是