题目内容
【题目】如图(1)所示,△ABC中,∠ABC,∠ACB的平分线交于点O,求证:∠BOC=90+
∠A.
变式1:如图(2)所示,∠ABC,∠ACD的平分线交于点O,求证:∠BOC=
∠A.
变式2:如图(3)所示,∠CBD,∠BCE的平分线交于点O,求证:∠BOC=90-
∠A.
![]()
【答案】见解析
【解析】
(1)先根据三角形内角和定理得到∠BOC=180°-∠OBC-∠OCB,则2∠BOC=360°-2∠OBC-2∠OCB,再根据角平分线的定义得∠ABC=2∠OBC,∠ACB=2∠OCB,则2∠BOC=360°-∠ABC-∠ACB,易得∠BOC=90°+
∠A;
变式1:根据BD为△ABC的角平分线,CD为△ABC外角∠ACE的平分线,由三角形外角性质可得;∠2=∠1+∠O,∠ACO=∠2=
∠ACD=
(∠A+∠ABC)=
(∠A+2∠1) =
∠A+∠1,两式联立可得 ∠1+∠O =
∠A+∠1,即∠BOC=
∠A.
变式2:根据三角形外角平分线的性质可得∠BCO=
(∠A+∠ABC)、∠OBC=
(∠A+∠ACB);根据三角形内角和定理可得∠BOC=90-
∠A..
(1)证明:在△BOC中,
∵∠BOC=180°-∠OBC-∠OCB,
∴2∠BOC=360°-2∠OBC-2∠OCB,
∵BO平分∠ABC,CO平分∠ACB,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴2∠BOC=360°-(∠ABC+∠ACB),
∵∠ABC+∠ACB=180°-∠A,
∴2∠BOC=180°+∠A,
∴∠BOC=90°+
∠A;
变式1:∵BD为△ABC的角平分线,CD为△ABC外角∠ACE的平分线,
∴ ∠1=
∠ABC ∠ACO=∠2=
∠ACD
∵∠2、∠ACO分别是△BCO、△ABC的外角
∴∠2=∠1+∠O,∠ACO=∠2=
∠ACD=
(∠A+∠ABC)=
(∠A+2∠1) =
∠A+∠1,
∴ ∠1+∠O =
∠A+∠1,
∴∠BOC=
∠A.
变式2:∵BO、CO为△ABC中∠ABC、∠ACB的外角平分线.
∴∠BCO=
(∠A+∠ABC)、∠OBC=
(∠A+∠ACB),
由三角形内角和定理得,∠BOC=180°-∠BCO-∠OBC,
=180°-
[∠A+(∠A+∠ABC+∠ACB)],
=180°-
(∠A+180°),
=90°-
∠A;