题目内容
矩形纸片ABCD的长AD为4cm,宽AB为3cm,把矩形纸片拼叠,使相对两顶点A,C重合,然后展开,求折痕EF的长.
对于正比例函数y=(1-k)x,若y随x的增大而减小,则k的值可以是( )
A.-1
B.3
C.0
D.-3
(2013佛山)某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x之间的关系的大致图象是( )
A.
B.
C.
D.
(2012青海西宁)函数的自变量x的取值范围在数轴上可表示为( )
(2012湖南衡阳)函数中,自变量x的取值范围是( )
A.x>-2
B.x≥2
C.x≠-2
D.x≥-2
如图,E,F分别是□ABCD的AD,BC边上的点,且AE=CF.
(1)求证:△ABE≌△CDF;
(2)若M,N分别是BE,DF的中点,连接MF,EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.
操作示例
对于边长为a的两个正方形ABCD和EFGH,按图1所示的方式摆放,沿虚线BD、EG剪开后,可以按图1所示的移动方式拼接为四边形BNED.从拼接的过程容易得到结论:
①四边形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED.
实践与探究
(1)对于边长分别为a,b(a>b)的两个正方形ABCD和EFGH,按图2所示的方式摆放,连接DE,过点D作DM⊥DE,交AB于点M,过点M作MN⊥DM,过点E作EN⊥DE,MN与EN相交于点N.
①证明:四边形MNED是正方形,并用含a,b的代数式表示正方形MNED的面积;
②在图2中,将正方形ABCD和正方形EFGH沿虚线剪开后,能够拼接为正方形MNED,请简略说明你的拼接方法(类比图1,用数字表示对应的图形);
(2)对于n(n是大于2的自然数)个任意的正方形,能否通过若干次拼接,将其拼接成为一个正方形?请简要说明你的理由.
(2013铁岭)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形.
(2)当△ABC满足什么条件时,矩形AEBD是正方形?并说明理由.
如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE.求证:四边形ABCD是平行四边形.