题目内容

精英家教网设正方形ABCD的边CD的中点为E,F是CE的中点(图).求证:∠DAE=
12
∠BAF
分析:作∠BAF的平分线,将角分为∠1与∠2相等的两部分,设法证明∠DAE=∠1或∠2即可,求证Rt△ABG≌Rt△ADE即可得∠DAE=∠2.
解答:精英家教网证明:如图,作∠BAF的平分线AH交DC的延长线于H,则∠1=∠2=∠3,
所以FA=FH.
设正方形边长为a,在Rt△ADF中,
AF2=AD2+DF2=a2+(
3a
4
)
2
=
25
16
a2
所以AF=
5
4
a
=FH.
从而CH=FH-FC=
5
4
a
-
a
4
=a,
所以Rt△ABG≌Rt△HCG(AAS),GB=GC=DE=
1
2
a.
从而Rt△ABG≌Rt△ADE(SAS),
所以∠DAE=∠2=
1
2
∠BAF.
点评:本题考查了勾股定理在直角三角形中的运用,考查了全等三角形的判定和对应边相等性质,本题中正确的求Rt△ABG≌Rt△ADE是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网