题目内容
如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是_____.
我国倡导的“一带一路”建设将促进我国与世界上的一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为,这个数用科学记数法表示为( )
A. B. C. D.
如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1____y2.(填“>”或“<”)
初一(1)班的篮球拉拉队同学,为了在明天的比赛中给同学加油助威,提前给每人制作了一面同一规格的三角形彩旗.小明放学回家后,发现自己的彩旗破损了一角,他想用彩旗重新制作了一面彩旗,请你帮助小明,用直尺与圆规在彩纸上作出一个与破损前完全一样的三角形.
如图,已知AB∥CD∥EF,∠B=60°,∠D=10°,EG平分∠BED,则∠GEF=_____°.
甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系的图象如图所示,下列说法:
(1)他们都行驶了18千米;甲在途中停留了0.5小时;
(2)乙比甲晚出发了0.5小时;相遇后甲的速度小于乙的速度;
(3)甲、乙两人同时到达目的地.
其中,符合图象描述的说法有( )
A. 2个 B. 1个 C. 3个 D. 0个
先阅读下列材料:
我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.
(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.
如:ax+by+bx+ay=(ax+bx)+(ay+by)
=x(a+b)+y(a+b)
=(a+b)(x+y)
2xy+y2﹣1+x2
=x2+2xy+y2﹣1
=(x+y)2﹣1
=(x+y+1)(x+y﹣1)
(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:
x2+2x﹣3
=x2+2x+1﹣4
=(x+1)2﹣22
=(x+1+2)(x+1﹣2)
=(x+3)(x﹣1)
请你仿照以上方法,探索并解决下列问题:
(1)分解因式:
(2)分解因式:x2﹣6x﹣7;
(3)分解因式:
如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片( )
A. 2张 B. 3张 C. 4张 D. 5张
先化简: ,然后在-1、0、1、2、3中选一个的值代入求值.