题目内容

在△ABC中,AB=6,AC=9,点D在边AB所在的直线上,且AD=2,过点D作DE∥BC交边AC所在直线于点E,则CE的长为 .

12或6.

【解析】

试题分析:如图①,当点D在边AB上时,∵AB=6,AC=9,AD=2,∴BD=AB﹣AD=6﹣2=4,∵DE∥BC,∴,即:,∴CE=6;

如图②,当点D在边AB的延长线上时,∵AB=6,AC=9,AD=2,∴BD=AB+AD=6+2=8,∵DE∥BC,∴,即:,∴CE=12;∴CE的长为6或12.故答案为:6或12.

考点:相似三角形的判定与性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网