题目内容
【题目】现有A、B两种手机上网计费方式,收费标准如下表所示:
计费方式 | 月使用费/元 | 包月上网时间/分 | 超时费/(元/分) |
A | 30 | 120 | 0.20 |
B | 60 | 320 | 0.25 |
设上网时间为x分钟,
(1)若按方式A和方式B的收费金额相等,求x的值;
(2)若上网时间x超过320分钟,选择哪一种方式更省钱?
【答案】(1)x=270或x=520;(2)当320<x<520时,选择方式B更省钱;当x=520时,两种方式花钱一样多;当x>520时选择方式A更省钱.
【解析】
(1)根据收取费用=月使用费+超时单价×超过时间,可找出yA、yB关于x的函数关系式;根据方式A和方式B的收费金额相等,分类讨论,列出方程,求解即可.
(2)列不等式,求解即可得出结论.
(1)当
时,
与x之间的函数关系式为:
当
时,
与x之间的函数关系式为:
即![]()
当
时,
与x之间的函数关系式为:
当
时,
与x之间的函数关系式为:
即![]()
方式A和方式B的收费金额相等,
当
时,![]()
当
时,
解得:
当
时,
解得:
即x=270或x=520时,方式A和方式B的收费金额相等.
(2) 若上网时间x超过320分钟,
解得320<x<520,
当320<x<520时,选择方式B更省钱;
解得x=520,
当x=520时,两种方式花钱一样多;
解得x>520,
当x>520时选择方式A更省钱.
练习册系列答案
相关题目
【题目】某商店新进一种台灯.这种台灯的成本价为每个30元,经调查发现,这种台灯每天的销售量y(单位:个)是销售单价x(单位:元)(30≤x≤60)的一次函数.
x | 30 | 35 | 40 | 45 | 50 |
y | 30 | 25 | 20 | 15 | 10 |
(1)求销售量y与销售单价x之间的函数表达式;
(2)设这种台灯每天的销售利润为w元.这种台灯销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?