题目内容
如图,已知点O是△ABC内一点,且点O到三边的距离相等,∠A=40°,对∠BOC=

- A.110°
- B.120°
- C.130°
- D.140°
A
分析:由已知,O到三角形三边距离相等,得O是内心,再利用三角形内角和定理即可求出∠BOC的度数.
解:由已知,O到三角形三边距离相等,所以O是内心,
即三条角平分线交点,AO,BO,CO都是角平分线,
所以有∠CBO=∠ABO=
∠ABC,∠BCO=∠ACO=
∠ACB,
∠ABC+∠ACB=180-40=140
∠OBC+∠OCB=70
∠BOC=180-70=110°
故选A.
分析:由已知,O到三角形三边距离相等,得O是内心,再利用三角形内角和定理即可求出∠BOC的度数.
解:由已知,O到三角形三边距离相等,所以O是内心,
即三条角平分线交点,AO,BO,CO都是角平分线,
所以有∠CBO=∠ABO=
∠ABC+∠ACB=180-40=140
∠OBC+∠OCB=70
∠BOC=180-70=110°
故选A.
练习册系列答案
相关题目