题目内容

(2010•高淳县一模)已知,Rt△ABC中,∠C=90°,AC=4,BC=3.以AC上一点O为圆心的⊙O与BC相切于点C,与AC相交于点D.
(1)如图1,若⊙O与AB相切于点E,求⊙O的半径;
(2)如图2,若⊙O在AB边上截得的弦FG=,求⊙O的半径.
【答案】分析:(1)由于AB和圆相切,所以连接OE,利用相似即可求出OE.
(2)已知弦长,求半径,要做弦的弦心距,构造直角三角形,利用勾股定理求出未知量.
解答:解:(1)连接OE,因为⊙O与AB相切于点E,所以OE⊥AB,
设OE=x,则CO=x,AO=4-x,
∵⊙O与AB相切于点E,
∴∠AEO=90°,
∵∠A=∠A,∠AEO=∠ACB=90°,
∴Rt△AOE∽Rt△ABC,


解得:x=
∴⊙O的半径为
(2)过点O作OH⊥AB,垂足为点H,则H为FG的中点,FH=FG=

连接OF,设OF=x,则OA=4-x,
由Rt△AOH∽Rt△ABC可得OH=
在Rt△OHF中,据勾股定理得:OF2=FH2+OH2
∴x2=(2+(2
解得x1=,x2=(舍去),
∴⊙O的半径为
点评:本题综合考查了切线的性质,相似三角形,解直角三角形等知识点的运用.是一道运用切线性质解题的典型题目,难度中等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网