题目内容
如图,在⊙O的外切四边形ABCD中,AB=5,BC=4,CD=3,则S△AOB:S△BOC:S△COD:S△DOA=________.
5:4:3:4
分析:作圆心到各边的垂线,由切线长定理知,DA=DE,CE=CF,BF=BG,AS=AG,从而可求得AD的长;已知圆心到各边和距离相等,根据三角形的面积公式即可求得解.
解答:
解:如图,作圆心到各边的垂线;
∵DS=DE,CE=CF,BF=BG,AS=AG,
∴AD+BC=CD+AB,
∴AD=4,
∴S△AOB:S△BOC:S△COD:S△DOA=AB:BC:CD:AD=5:4:3:4.
点评:本题利用了切线长定理,三角形的面积公式求解.
分析:作圆心到各边的垂线,由切线长定理知,DA=DE,CE=CF,BF=BG,AS=AG,从而可求得AD的长;已知圆心到各边和距离相等,根据三角形的面积公式即可求得解.
解答:
∵DS=DE,CE=CF,BF=BG,AS=AG,
∴AD+BC=CD+AB,
∴AD=4,
∴S△AOB:S△BOC:S△COD:S△DOA=AB:BC:CD:AD=5:4:3:4.
点评:本题利用了切线长定理,三角形的面积公式求解.
练习册系列答案
相关题目