题目内容
某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:
该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )
A.平均数 B.方差 C.众数 D.中位数
下列说法正确的是( )
A.圆内接正六边形的边长与该圆的半径相等
B.在平面直角坐标系中,不同的坐标可以表示同一点
C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根
D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等
一个扇形的圆心角为,面积为,则此扇形的半径长为______.
随若移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A .和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调査,得到如下图表(部分信息未给出):
根据以上信息解答下列问题:
(1)这次被调查的学生有多少人?
(2)求表中 的值,并补全条形统计图;
(3)若该中学约有名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?
并根据以上调査结果,就中学生如何合理使用手机给出你的一条建议.
观察下列图形,它是把一个三角形分别连接这个三角形的中点,构成4个小三角形,挖去中间的小三角形(如题1);对剩下的三角形再分别重复以上做法,……,将这种做法继续下去(如图2,图3……),则图6中挖去三角形的个数为( )
A.121 B.362 C.364 D.729
-2的倒数是( )
A. B. C.-2 D.2
计算: +( ﹣1)2﹣ +()﹣1.
下列方程中,没有实数根的是( )
A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=0
公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机.是无理数的证明如下:
假设是有理数,那么它可以表示成(与是互质的两个正整数).于是,所以,.于是是偶数,进而是偶数.从而可设,所以,于是可得也是偶数.这与“与是互质的两个正整数”矛盾,从而可知“是有理数”的假设不成立,所以,是无理数.
这种证明“是无理数”的方法是( )
A.综合法 B.反证法 C.举反例法 D.数学归纳法