题目内容
解方程:﹣2=.
一个正多边形的内角和是其外角和的2倍,则这个正多边形的边数是_________ .
如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,
∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD=,求AD的长.
若式子 在实数范围内有意义,则x的取值范围是 .
如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于点C,已知A(﹣1,0),且tan∠ABC=
(1)求抛物线的解折式.
(2)在直线BC下方抛物线上一点P,当四边形OCPB的面积取得最大值时,求这个最大值,并求此时点P的坐标.
(3)在y轴的左侧抛物线上有一点M,满足∠MBA=∠ABC,若点N是直线BC上一点,当△MNB为等腰三角形时,求点N的坐标.
在函数y=中,自变量x的取值范围是 .
在Rt△ACB中,∠C=90°,BC=5,AC=12,则sinA=( )
A. B. C. D.
一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为 .
操作与证明:
如图1,已知P是矩形ABCD的边BC上的一个点(P与B、C两点不重合),过点P作射线PE⊥AP,在射线PE上截取线段PF,使得PF=AP.
(1)过点F作FG⊥BC交射线BC点G.(尺规作图,保留痕迹,不写作法)
(2)求证:FG=BP.
探究与计算:
(3)如图2,若AB=BC,连接CF,求∠FCG的度数;
(4)在(3)的条件下,当=时,求sin∠CFP的值.