题目内容

如图,⊙O的直径CD过弦AB的中点E,∠BCD=15°,⊙O的半径为10,则AB=________.

5
分析:连接OB,根据圆周角定理求出∠BOD的度数,再根据垂径定理得出∠AOD的度数,由直角三角形的性质即可得出结论.
解答:解:连接OB,
∵∠BCD与∠BOD是同弧所对的圆周角与圆心角,
∴∠BOD=2∠BCD=2×15°=30°,
∵点E是弦AB的中点,
∴AB⊥CD,=
∴AB=2AE,∠AOD=∠BOD=30°,
∵⊙O的半径为10,
∴OA=CD=×10=5,
∴AE=OA=×5=
∴AB=2AE=2×=5.
故答案为:5.
点评:本题考查的是垂径定理及圆周角定理、直角三角形的性质等知识,根据题意作出辅助线,构造出圆心角是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网