题目内容
【题目】已知∠MON=120°,点A,B分别在ON,OM边上,且OA=OB,点C在线段OB上(不与点O,B重合),连接CA.将射线CA绕点C逆时针旋转120°得到射线CA′,将射线BO绕点B逆时针旋转150°与射线CA′交于点D.
![]()
(1)根据题意补全图1;
(2)求证:
①∠OAC=∠DCB;
②CD=CA(提示:可以在OA上截取OE=OC,连接CE);
(3)点H在线段AO的延长线上,当线段OH,OC,OA满足什么等量关系时,对于任意的点C都有∠DCH=2∠DAH,写出你的猜想并证明.
【答案】(1)见解析;(2)①见解析;②见解析;(3)猜想OH﹣OC=OA时,对于任意的点C都有∠DCH=2∠DAH;理由见解析
【解析】
(1)根据题意即可补全图形;
(2)①由旋转得∠ACD=120°,由三角形内角和得出∠DCB+∠ACO=60°,∠OAC+∠ACO=60°,即可得出结论;
②在OA上截取OE=OC,连接CE,则∠OEC=∠OCE=
(180°﹣∠MON)=30°,∠AEC=150°,得出∠AEC=∠CBD,易证AE=BC,由ASA证得△AEC≌△CBD,即可得出结论;
(3)猜想OH﹣OC=OA时,对于任意的点C都有∠DCH=2∠DAH,在OH上截取OF=OC,连接CF、CH,则FH=OA,∠COF=180°﹣∠MON=60°,得出△OFC 是等边三角形,则CF=OC,∠CFH=∠COA=120°,由SAS证得△CFH≌△COA,得出∠H=∠OAC,由三角形外角性质得出∠BCH=∠COF+∠H=60°+∠H=60°+∠OAC,则∠DCH=60°+∠H+∠DCB=60°+2∠OAC,由CA=CD,∠ACD=120°,得出∠CAD=30°,即可得出∠DCH=2∠DAH.
解:(1)根据题意补全图形,如图1所示:
![]()
(2)证明:①由旋转得:∠ACD=120°,
∴∠DCB+∠ACO=180°﹣120°=60°,
∵∠MON=120°,
∴∠OAC+∠ACO=180°﹣120°=60°,
∴∠OAC=∠DCB;
②在OA上截取OE=OC,连接CE,如图2所示:
则∠OEC=∠OCE=
(180°﹣∠MON)=
(180°﹣120°)=30°,
∴∠AEC=180°﹣∠OEC=180°﹣30°=150°,
由旋转得:∠CBD=150°,
∴∠AEC=∠CBD,
∵OA=OB,OE=OC,
∴AE=BC,在△AEC和△CBD中,
,
∴△AEC≌△CBD(ASA),
∴CD=CA;
![]()
(3)解:猜想OH﹣OC=OA时,对于任意的点C都有∠DCH=2∠DAH;理由如下:
在OH上截取OF=OC,连接CF、CH,如图3所示:
则FH=OA,∠COF=180°﹣∠MON=180°﹣120°=60°,
∴△OFC 是等边三角形,
∴CF=OC,∠CFH=∠COA=120°,
在△CFH和△COA中,
,
∴△CFH≌△COA(SAS),
∴∠H=∠OAC,
∴∠BCH=∠COF+∠H=60°+∠H=60°+∠OAC,
∴∠DCH=60°+∠H+∠DCB=60°+2∠OAC,
∵CA=CD,∠ACD=120°,
∴∠CAD=30°,
∴∠DCH=2(∠CAD+∠OAC)=2∠DAH.
![]()
【题目】如图,已知△AOB与△A1OB1是以点O为位似中心的位似图形,且相似比为1:2,点B的坐标为(-1,2),则点B1的坐标为( )
![]()
A.(2,-4)B.(1,-4)C.(-1,4)D.(-4,2)
【题目】为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.
a.甲、乙两校40名学生成绩的频数分布统计表如下:
成绩x 学校 |
|
|
|
|
|
甲 | 4 | 11 | 13 | 10 | 2 |
乙 | 6 | 3 | 15 | 14 | 2 |
(说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)
b.甲校成绩在
这一组的是:
70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙两校成绩的平均分、中位数、众数如下:
学校 | 平均分 | 中位数 | 众数 |
甲 | 74.2 | n | 5 |
乙 | 73.5 | 76 | 84 |
根据以上信息,回答下列问题:
(1)写出表中n的值;
(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是_____________校的学生(填“甲”或“乙”),理由是__________;
(3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.