题目内容
如图,已知反比例函数的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于点C,连接AD,OC.若△ABO的周长为,AD=2,则△ACO的面积为_________.
如图,,,,是上的四个点,.那么与的数量关系是( )
A. = B. > C. < D. 无法确定
若等腰三角形的一个角为80°,则顶角为 .
如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)请直接写出线段AF,AE的数量关系 ;
(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;
(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.
在△ABC 中,D 是 BC 边的中点,E、F 分别在 AD 及其延长线上,CE∥BF,连接BE、CF.
(1)求证:△BDF ≌△CDE;
(2)若 DE =BC,试判断四边形 BFCE 是怎样的四边形,并证明你的结论.
如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x=_____.
规定如min(2,4)=2.按照上面的规定,方程的根是( )
A. B. -1 C. D. 或-1
如图,等边三角形ABC中,AB= ,AH⊥BC于点H,过点B作BD⊥AB交线段AH的延
长线于点D,连结CD. 点E为线段AD上一点(不与点A,D重合),过点E作EF∥AB交BC于点
F,以EF为直径作⊙O. 设AE的长为.
(1)求线段CD的长度.
(2)当点E在线段AH上时,用含x的代数式表示EF的长度.
(3) 当⊙O与四边形ABDC的一边所在直线相切时,求所有满足条件的的值.
下列各数: , ,5.12,﹣,0, ,3.1415926, ,﹣,2.181181118…(两个8之间1的个数逐次多1).其中是无理数的有__个.