题目内容
如图,在平面直角坐标系中,O为原点,已 知A(2,0)、C(1,(1)求抛物线的解析式;
(2)判断点B是否在抛物线上;
(3)若点P是线段OA上的点,且∠APD=∠OAB,求点P的坐标;
(4)若点P是x轴上的点,以P、A、D为平行四边形的三个顶点作平行四边形,使该平行四边形的另一个顶点在y轴上,请直接写出点P的坐标.
【答案】分析:(1)将A点的坐标代入y=ax2-2
x,即可得出抛物线的解析式;
(2)先根据旋转的性质得出四边形OABC是平行四边形,OA=2,因此将C点向右平移2个单位即可得出B点的坐标,然后将B点的坐标代入抛物线的解析式中即可判断出B是否在抛物线上;
(3)先根据二次函数的性质求出顶点D的坐标,然后求出OB、AD的长,当∠APD=∠OAB时,可得出△APD∽△OAB,进而可得出关于AP,AD、OA、OB的比例关系式.设出P点的坐标,然后用P的横坐标表示出AP的长,即可根据上面的比例关系式求出P点的坐标;
(4)根据平行四边形的性质,分别以AP,AD,DP为对角线分三种情况进行分析即可求得答案.
解答:解:(1)∵抛物线y=ax2-2
x经过点A(2,0),
∴4a-4
=0,
解得a=
,
∴抛物线的解析式为y=
x2-2
x;
(2)∵将△OAC绕AC的中点旋转180°,点O落到点B的位置,
∴△ACO≌△CAB,
∴AO=CB,CO=AB,
∴四边形OABC是平行四边形,
∴BC∥OA,且BC=OA.
∵A(2,0)、C(1,
),
∴xB=xC+2=3,yB=yC=3
,
∴B(3,3
).
将B(3,3
)代入y=
x2-2
x,等式成立,
∴点B在抛物线上;
(3)分别过点B、D作x轴的垂线,垂足分别为E、F,
由y=
x2-2
x,可求得顶点D的坐标为(1,-
),
∵B(3,3
),
∴在Rt△BOE和Rt△DAF中,
tan∠BOE=
,
tan∠DAF=
,
∴∠BOE=∠DAF=60°,
又∵∠APD=∠OAB,
∴△APD∽△OAB,
∴
.
∵OA=2,
,
,
∴
,
∴
,
∴P(
,0);
(4)设以P、A、D为平行四边形的第四个顶点为Q,分三种情况进行讨论:



①如图1,以DP为对角线,此时QD=AP=1,因此OP=OA-AP=2-1=1,P点的坐标为(1,0);
②如图2,以AD为对角线,此时QD=AP=1,因此OP=OA+AP=2+1=3,P点的坐标为(3,0);
③如图3,以AP为对角线,此时D,Q两点的纵坐标互为相反数,因此Q点的坐标为(0,
),由于AD与PQ平行且相等,将A点先向左平移1个单位,再向下平移
个单位得到点D,所以将Q点先向左平移1个单位,再向下平移
个单位得到点P,P点的坐标为(0-1,
-
),即(-1,0).
因此共有3个符合条件的P点,其坐标为:(-1,0)或(1,0)或(3,0).
点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,旋转的性质,相似三角形的判定与性质,平行四边形的性质等知识,综合性较强,运用分类讨论、数形结合的思想方法是解题的关键.
(2)先根据旋转的性质得出四边形OABC是平行四边形,OA=2,因此将C点向右平移2个单位即可得出B点的坐标,然后将B点的坐标代入抛物线的解析式中即可判断出B是否在抛物线上;
(3)先根据二次函数的性质求出顶点D的坐标,然后求出OB、AD的长,当∠APD=∠OAB时,可得出△APD∽△OAB,进而可得出关于AP,AD、OA、OB的比例关系式.设出P点的坐标,然后用P的横坐标表示出AP的长,即可根据上面的比例关系式求出P点的坐标;
(4)根据平行四边形的性质,分别以AP,AD,DP为对角线分三种情况进行分析即可求得答案.
解答:解:(1)∵抛物线y=ax2-2
∴4a-4
解得a=
∴抛物线的解析式为y=
(2)∵将△OAC绕AC的中点旋转180°,点O落到点B的位置,
∴△ACO≌△CAB,
∴AO=CB,CO=AB,
∴四边形OABC是平行四边形,
∴BC∥OA,且BC=OA.
∵A(2,0)、C(1,
∴xB=xC+2=3,yB=yC=3
∴B(3,3
将B(3,3
∴点B在抛物线上;
由y=
∵B(3,3
∴在Rt△BOE和Rt△DAF中,
tan∠BOE=
tan∠DAF=
∴∠BOE=∠DAF=60°,
又∵∠APD=∠OAB,
∴△APD∽△OAB,
∴
∵OA=2,
∴
∴
∴P(
(4)设以P、A、D为平行四边形的第四个顶点为Q,分三种情况进行讨论:
①如图1,以DP为对角线,此时QD=AP=1,因此OP=OA-AP=2-1=1,P点的坐标为(1,0);
②如图2,以AD为对角线,此时QD=AP=1,因此OP=OA+AP=2+1=3,P点的坐标为(3,0);
③如图3,以AP为对角线,此时D,Q两点的纵坐标互为相反数,因此Q点的坐标为(0,
因此共有3个符合条件的P点,其坐标为:(-1,0)或(1,0)或(3,0).
点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,旋转的性质,相似三角形的判定与性质,平行四边形的性质等知识,综合性较强,运用分类讨论、数形结合的思想方法是解题的关键.
练习册系列答案
相关题目