题目内容
如图,六边形ABCDEF与六边形A′B′C′D′E′F′相似.
求:(1)相似比;
(2)∠A和∠B′的度数;
(3)边CD,EF,A′F′,E′D′的长.
如图,AD∥BC,∠DAC=3∠BCD,∠ACD=20°,∠BAC=90°,则∠B的度数为( )
A. 30° B. 35° C. 40° D. 45°
一个几何体的三视图如图所示,则这个几何体是( )
A. 三棱锥 B. 三棱柱 C. 圆柱 D. 长方体
阅读下列短文,并回答下列问题:我们把相似的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,我们就把它们叫作相似体.
如图,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比( a ∶ b ),设S 甲 ,S 乙 分别表示这两个正方体的表面积,则
.又设V 甲 ,V 乙 分别表示这两个正方体的体积,则.
(1)下列几何体中,一定属于相似体的是(___)
A.两个球体 B.两个圆锥体
C.两个圆柱体 D.两个长方体
(2)请归纳出相似体的三个主要性质:①相似体的一切对应线段(或弧)的比等于__________;②相似体的表面积的比等于__________;③相似体的体积比等于__________.
(2016山西省)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是( )
A. 矩形ABFE B. 矩形EFCD C. 矩形EFGH D. 矩形DCGH
如图,在△ABC中,点D是BC边上的一点,∠B=48°,∠BAD=28°,将△ABD沿AD折叠得到△AED,AE与BC交于点F,则∠AFC=_______________°.
下列四组图形中,一定相似的是( )
A. 正方形与矩形B.正方形与菱形C.菱形与菱形D.正五边形与正五边形
一辆轿车从甲地驶往乙地,到达乙地后立即返回甲地,速度是原来的1.5倍,往返共用t小时.一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶,设轿车行驶的时间为x(h),两车离开甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.
(1)轿车从乙地返回甲地的速度为 km/t,t= h ;
(2)求轿车从乙地返回甲地时y与x之间的函数关系式;
(3)当轿车从甲地返回乙地的途中与货车相遇时,求相遇处到甲地的距离.
下列二次根式中,是最简二次根式的是
A. B. C. D.