题目内容
如图,某小区楼房附近有一个斜坡,小张发现楼房在水平地面与斜坡处形成的投影中,在斜坡上的影子长CD=6m,坡角到楼房的距离CB=8m,在D点处观察点A的仰角为54°,已知坡角为30°,你能求出楼房AB的高度吗?(tan54°≈1.38,结果精确到0.1m)
解:过D点作DF⊥AB,交AB于点F,
在Rt△ECD中,CD=6,∠ECD=30°,
∴DE=3=FB,EC=3
,
∴DF=EC+CB=8+3
,
在Rt△ADF中,tan∠ADF=
,
∴AF=DF×tan45°,
∴AF=(8+3
)×1.38,
∴AF≈18.20,
∴AB=AF+FB=18.20+3=21.20≈21.2,
∴楼房AB的高度约是21.2m。
在Rt△ECD中,CD=6,∠ECD=30°,
∴DE=3=FB,EC=3
∴DF=EC+CB=8+3
在Rt△ADF中,tan∠ADF=
∴AF=DF×tan45°,
∴AF=(8+3
∴AF≈18.20,
∴AB=AF+FB=18.20+3=21.20≈21.2,
∴楼房AB的高度约是21.2m。
练习册系列答案
相关题目