题目内容
【题目】如图,二次函数y= -x2-2x的图象与x轴交于点A、O,在抛物线上有一点P,满足
S△AOP=3,则点P的坐标是( )
![]()
A. (-3,-3) B. (1,-3) C. (-3,-3)或(-3,1) D. (-3,-3)或(1,-3)
【答案】D
【解析】分析:根据抛物线的解析式,即可确定点A的坐标,由于OA是定长,根据△AOP的面积即可确定P点纵坐标的绝对值,将其代入抛物线的解析式中,即可求得P点的坐标.
解答:解:抛物线的解析式中,令y=0,得:-x2-2x=0,解得x=0,x=-2;
∴A(-2,0),OA=2;
∵S△AOP=
OA?|yP|=3,∴|yP|=3;
当P点纵坐标为3时,-x2-2x=3,x2+2x+3=0,△=4-12<0,方程无解,此种情况不成立;
当P点纵坐标为-3时,-x2-2x=-3,x2+2x-3=0,
解得x=1,x=-3;
∴P(1,-3)或(-3,-3);
故选D.
练习册系列答案
相关题目