题目内容
(本题满分10分)先化简,再求值:,其中.
在函数中,自变量x的取值范围是 .
阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底和,并且等于两底和的一半.
如图(1):在梯形ABCD中:AD∥BC,
∵E、F是AB、CD的中点,∴EF∥AD∥BC,EF=(AD+BC)
材料二:经过三角形一边的中点与另一边平行的直线必平分第三边
如图(2):在△ABC中:∵E是AB的中点,EF∥BC
∴F是AC的中点
请你运用所学知识,结合上述材料,解答下列问题.
如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°.
(1)求证:EF=AC;
(2)若OD=,OC=5,求MN的长.
关于x的一元二次方程有实数根,则m的取值范围是( )
A. B.
C.且 D.且
(本题满分12分,每小题满分各4分)
已知在平面直角坐标系中(如图),抛物线与轴的负半轴相交于点,与轴相交于点,.点在抛物线上,线段与轴的正半轴交于点,线段与轴相交于点.设点的横坐标为.
(1)求这条抛物线的解析式;
(2)用含的代数式表示线段的长;
(3)当时,求的正弦值.
已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:
年龄(岁)
11
12
13
14
15
人数
5
16
那么“科技创新社团”成员年龄的中位数是_______岁.
计算:_______.
计算:____________.
如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,.
(1)求证:PB是的切线;
(2)连接OP,若,且OP=8,的半径为,求BC的长.