题目内容
函数中,自变量的取值范围是 .
(本题8分)教材在探索平方差公式时利用了面积法,面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为,也可以表示为4×ab+由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则.
(1)图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.
(2)如图③,直角△ABC中,∠ACB=90°,AC=3cm,BC=4cm,则斜边AB上的高CD的长为 cm.
(3)试构造一个图形,使它的面积能够解释,画在下面的网格中,并标出字母a、b所表示的线段.
将一个圆心角为120°,半径为6cm的扇形围成一个圆锥的侧面,则所得圆锥的高为 cm.
(本题满分6分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四点中任意取一点,以所取的这一点及B、C为顶点三角形,则所画三角形是等腰三角形的概率是 ;
(2)从A、D、E、F四点中先后任意取两个不同的点,以所取的这两点及B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表求解).
已知:m、n为两个连续的整数,且m<<n,则m+n= .
在平面直角坐标系中,将抛物线先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为( ).
A. B.
C. D.
(10分)在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.
(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;
(2)结合图2,通过观察、测量、猜想:=______,并证明你的猜想;
(3)把正方形ABCD改为菱形,其他条件不变(如图3),若AC=8,BD=6,直接写出的值.
如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是( )
A.8,6 B.8,5 C.52,52 D.52,53
若反比例函数的图象经过点(-2,1),则一次函数的图象不经过第 象限.