题目内容

【题目】如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积(  )

A. 11 B. 10 C. 9 D. 16

【答案】B

【解析】

根据矩形和折叠性质可得EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在RtBCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.

如图,∵四边形ABCD是矩形,

AD=BC,D=B=90°,

根据折叠的性质,有HC=AD,H=D,HE=DE,

HC=BC,H=B,

又∠HCE+ECF=90°,BCF+ECF=90°,

∴∠HCE=BCF,

在△EHC和△FBC中,

∴△EHC≌△FBC,

BF=HE,

BF=HE=DE,

BF=EH=DE=x,

AF=CF=9﹣x,

RtBCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2

解得:x=4,即DE=EH=BF=4,

AG=DE=EH=BF=4,

GF=AB﹣AG﹣BF=9﹣4﹣4=1,

EF2=EG2+GF2=32+12=10,

故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网