题目内容
化简的结果正确的是()
A. B. C. D.
如图,中,,点在的延长线上,点在上,,点是与的交点,且.
图中是否存在与相等的角?若存在,请找出,并加以证明,若不存在,说明理由;
求证:;
若将“点在的延长线上,点在上”和“点是与的交点,且”分别改为“点在上,点在的延长线上”和“点是的延长线与的交点,且”,其他条件不变(如图).当,时,求的长(用含、的式子表示).
若2x5ayb+4与﹣的和仍为一个单项式,则ba的值是( )
A. 2 B. ﹣2 C. 1 D. ﹣1
计算:①________; ②________.
如果成立,则的范围( )
A. x≥0 B. x≥1
C. 0<x≤1 D. x>0
如图,抛物线y=﹣x2+bx+c(b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.
(1)求该抛物线的函数关系式与C点坐标;
(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?
(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);
①探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;
②试求出此旋转过程中,(NA+NB)的最小值.
解下列方程:
(1)x2﹣2x﹣2=0;
(2)(x﹣1)(x﹣3)=8.
如图,在平面直角坐标系中,抛物线y=ax2+bx+4交x轴于点A(﹣2,0)和B(B在A右侧),交y轴于点C,直线y=经过点B,交y轴于点D,且D为OC中点.
(1)求抛物线的解析式;
(2)若P是第一象限抛物线上的一点,过P点作PH⊥BD于H,设P点的横坐标是t,线段PH的长度是d,求d与t的函数关系式;
(3)在(2)的条件下,当d=时,将射线PH绕着点P顺时针方向旋转45°交抛物线于点Q,求点Q的坐标.
石英表分针的长为,经过分钟它的针尖经过的弧长是( )