题目内容
计算:.
关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是( )
A. 2 B. 1 C. 0 D. ﹣1
先化简: ,然后从-2,-1,0,1,2中选取一个你喜欢的值代入求值.
下列计算正确的是( )
A. (2a-1)2=4a2-1 B. 3a6÷3a3=a2
C. (-ab2) 4=-a4b6 D. -2a+(2a-1)=-1
如图,E是正方形ABCD的边DC上的一点,过A作AF⊥AE,交CB延长线于点F.AE的延长线交BC的延长线于点G.
(1)求证:AE=AF;
(2)若AF=7,DE=2,求EG的长.
函数y=与y=k2 x(k1、k2均是不为0的常数,)的图像交于A、B两点,若点A的坐标是(2,3),则点B的坐标是_________.
一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是( )
A. 6π B. 4π C. 8π D. 4
如图,正方形ABCD的边长为4,点E、F分别在AB、BC上,且AE=BF=1,CE、DF交于点O,下列结论:①∠DOC=90°,②OC=OE,③CE=DF,④tan∠OCD=,⑤S△DOC=S四边形EOFB中,正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
数学复习课上,张老师出示了下框中的问题:
已知:在Rt△ACB中,∠C=90°,点D是斜边AB上的中点,连接CD.
求证:CD=AB.
问题思考
(1)经过独立思考,同学们想出了多种正确的证明思想,其中有位同学的思路如下:如图1,过点B作BE∥AC交CD的延长线于点E。请你根据这位同学的思路提示证明上述框中的问题.
方法迁移
(2)如图2,在Rt△ACB中,∠ACB=90°,点D为AB的中点,点E是线段AC上一动点,连接DE,线段DF始终与DE垂直且交BC于点F。试猜想线段AE,EF,BF之间的数量关系,并加以证明.
拓展延伸
(3)如图3,在Rt△ACB中,∠ACB=90°,点D为AB的中点,点E是线段AC延长线上一动点,连接DE,线段DF始终与DE垂直且交CB延长线于点F。试问第(2)小题中线段AE,EF,BF之间的数量关系会发生改变吗?若会,请写出关系式;若不会,请说明理由.