题目内容
已知(2x-21)(3x-7)-(3x-7)(x-13)可因式分解为(3x+a)(x+b),其中a,b均为整数,则a+3b=_____.
如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.若∠ACD=110°,则∠MAB的度数为( )
A. 70° B. 35° C. 30° D. 不能确定
如图,已知⊙O的弦CD垂直于直径AB,点E在CD上,且EC = EB .
(1)求证:△CEB∽△CBD ;
(2)若CE = 3,CB=5 ,求DE的长.
一个三角形的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则其余两边之和为( )
A.19 B.17 C.24 D.21
给你若干张长方形和正方形卡片,如图,请你用拼图的方法,拼成一个大长方形,使它的面积等于a2+5ab+4b2,并根据你拼成的图形将多项式a2+5ab+4b2进行因式分解.
下列多项式中,不能用公式法因式分解的是( )
A. -x2+16y2
B. 81(a2+b2-2ab)-(a+b)2
C. m2-mn+n2
D. -x2-y2
已知二次函数y=x2-2mx+m2-1.
(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.
⊙O的内接正三角形和外切正方形的边长之比是( )
A. :2 B. 1 :1 C. 1: D.
在校园歌手大奖赛上,比赛规则为:七位评委打分,去掉一个最高分和一个最低分后,所剩数据取平均数即为选手的最后得分.七位评委给某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,则这位歌手的最后得分是多少?