题目内容
在平面直角坐标系中,点P(-2,4)到轴的距离是 ,到轴的距离是 ,到原点的距离是 .
如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=55°,则∠AED′等于( )
A.55° B.70° C.60° D.65°
计算(每小题5分,共10分)
(1);
(2).
(本题12分)已知直线AB分别交、轴于A(4,0)、B两点,C(-4,)为直线AB上且在第二象限内一点,若△COA的面积为8,
(1)如图1,求C点坐标;
(2)如图2,点M为第二象限内一点,CM⊥OM于M,CN⊥轴于N,连MN,求证:的值;
(3)如图3,过C作CN⊥轴于N,G为第一象限内一点,且∠NGO=45°,试探究GC2、GN2与GO2之间的数量关系并说明理由.
(本题6分)在实数范围内分解因式:(1);(2).
如图,已知Rt△ABC中,∠BAC=90°,AD⊥BC,BD=9,CD=16,下列选项结论中,此题数据不能验证的结论选项是( ).
A、 B、
C、 D、
(本题12分)已知抛物线y=+c与x轴交于A(-1,0),B两点,交y轴于点C
(1)求抛物线的解析式
(2)点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG,求n的值并直接写出m的取值范围(利用图1完成你的探究)
(3)如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长
如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )
图是甲,乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )
A.甲、乙都可以
B.甲、乙都不可以
C.甲不可以,乙可以
D.甲可以,乙不可以