题目内容
已知抛物线与轴交于点A,点B,与轴交于点C,若D为AB的中点,则CD的
长为( )
(A) (B) (C) (D)
如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为( ).
A.x≥ B.x≤3 C.x≤ D.x≥3
计算(每小题5分,计30分):
(1)
(2)
(3)
(4)
(5)
(6)
(本小题10分)已知二次函数( b,c为常数).
(Ⅰ)当b =2,c =-3时,求二次函数的最小值;
(Ⅱ)当c =5时,若在函数值y =1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;
(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.
如图,在每个小正方形的边长为1的网格中,点A, B, C, D均在格点上,点E, F分别为线段BC,DB上的动点,且BE =DF.
(Ⅰ)如图①,当BE =时,计算的值等于 ;
(Ⅱ)当取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置是如何找到的(不要求证明) .
估计的值在( )
(A)1和2之间 (B)2和3之间 (C)3和4之间 (D)4和5之间
已知抛物线y=ax2+bx+c的顶点为(1,0),与y轴的交点坐标为(0,).R(1,1)是抛物线对称轴l上的一点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若P是抛物线上的一个动点(如图一),求证:点P到R的距离与点P到直线y=﹣1的距离恒相等;
(3)设直线PR与抛物线的另一交点为Q,E为线段PQ的中点,过点P、E、Q分别作直线y=﹣1的垂线.垂足分别为M、F、N(如图二).求证:PF⊥QF.
若不等式组恰有两个整数解,则m的取值范围是( )
A.﹣1≤m<0 B.﹣1<m≤0 C.﹣1≤m≤0 D.﹣1<m<0
如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为 .