题目内容
在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)
(2)试估算口袋中白种颜色的球有多少只?
(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少?
| 摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 | ||
| 摸到白球的次数m | 58 | 96 | 116 | 295 | 484 | 601 | ||
摸到白球的频率
| 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(2)试估算口袋中白种颜色的球有多少只?
(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少?
考点:利用频率估计概率,列表法与树状图法
专题:计算题
分析:(1)根据统计数据,当n很大时,摸到白球的频率接近0.6;
(2)根据利用频率估计概率,可估计摸到白球的概率为0.6,然后利用概率公式计算白球的个数;
(3)先利用列表法展示所有20种等可能的结果数,再找出两只球颜色不同所占结果数,然后根据概率公式求解.
(2)根据利用频率估计概率,可估计摸到白球的概率为0.6,然后利用概率公式计算白球的个数;
(3)先利用列表法展示所有20种等可能的结果数,再找出两只球颜色不同所占结果数,然后根据概率公式求解.
解答:解:(1)答案为:0.6;
(2)由(1)摸到白球的概率为0.6,所以可估计口袋中白种颜色的球的个数=5×0.6=3(只);
(3)画树状图为:

共有20种等可能的结果数,其中两只球颜色不同占12种,
所以两只球颜色不同的概率=
=
.
(2)由(1)摸到白球的概率为0.6,所以可估计口袋中白种颜色的球的个数=5×0.6=3(只);
(3)画树状图为:
共有20种等可能的结果数,其中两只球颜色不同占12种,
所以两只球颜色不同的概率=
| 12 |
| 20 |
| 3 |
| 5 |
点评:本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.也考查了列表法与树状图法.
练习册系列答案
相关题目
下列各组数中,互为相反数的是( )
A、2和
| ||
| B、-2和-|x| | ||
| C、-2和|-2| | ||
| D、-2和|y| |
x2-4x+1=( )
| A、(x-2)2+3 |
| B、(x-2)2-3 |
| C、(x+2)2+3 |
| D、(x+2)2-3 |