题目内容

精英家教网已知:如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交⊙O的切线BF于点F,B为切点.求证:(1)BD平分∠CBF;(2)AB•BF=AF•CD.
分析:(1)由于AF是∠BAC的角平分线,那么∠1=∠2,利用弦切角定理可得∠1=∠3,利用同弧所对的圆周角相等,可得∠2=∠4,那么,可证∠3=∠4,即BD平分∠CBF;
(2)由于∠3=∠1,∠F=∠F,那么可证△DBF∽△BAF,再利用相似三角形的性质,可得相关比例线段AB:AF=BD:BF,又由于∠1=∠2,同圆里相等的圆周角所对的弧相等,而同圆里相等的弧所对的弦相等,从而BD=CD,等量代换,可得AB:AF=CD:BF,即AB•BF=AF•CD.
解答:精英家教网证明:(1)∵AD平分∠BAC,
∴∠1=∠2,(2分)
∵BF切⊙O于点B,∴∠3=∠2,
∴∠3=∠1,(4分)
又∵∠2=∠4,
∴∠3=∠4,即BD平分∠CBF;(6分)

(2)在△DBF和△BAF中,
∵∠3=∠1,∠F=∠F,
∴△DBF∽△BAF,(8分)
BD
AB
=
BF
AF
即AB•BF=AF•BD(10分)
∵∠1=∠2,
∴BD=CD,(11分)
∴AB•BF=AF•CD.(12分)
点评:本题利用了角平分线性质、弦切角定理、同弧所对的圆周角相等、相似三角形的判定和性质等知识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网