题目内容

如图,已知B是线段AE上一点,ABCD和BEFG都是正方形,连接AG、CE.
(1)求证:AG=CE;
(2)设CE与GF的交点为P,求证:数学公式

证明:(1)∵四边形ABCD和BEFG是正方形,
∴AB=CB,BG=BE,∠ABG=∠CBE=90°,
∴△ABG≌△CBE,
∴AG=CE,

(2)∵PG∥BE

∵BG=BE,AG=CE,


分析:(1)根据正方形的特征,可知AB=CB,BG=BE,∠ABG=∠CBE=90°,根据全等三角形的判定定理,可知△ABG≌△CBE,从而得出AG=CE,
(2)根据正方形的特征,可知PG∥BE,,再由(1)△ABG≌△CBE,得出BG=BE,AG=CE,从而得出
点评:本题主要考查了正方形的性质,全等三角形的判定,全等三角形的性质,比较综合,难度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网