ÌâÄ¿ÄÚÈÝ
| BC |
| AB |
£¨1£©sad60¡ã=
£¨2£©¶ÔÓÚ0¡ã£¼A£¼180¡ã£¬¡ÏAµÄÕý¶ÔÖµsadAµÄȡֵ·¶Î§ÊÇ
£¨3£©Èçͼ¢Ú£¬ÒÑÖªsinA=
| 3 |
| 5 |
·ÖÎö£º£¨1£©¸ù¾ÝµÈÑüÈý½ÇÐεÄÐÔÖÊ£¬Çó³öµ×½ÇµÄ¶ÈÊý£¬ÅжϳöÈý½ÇÐÎΪµÈ±ßÈý½ÇÐΣ¬ÔÙ¸ù¾ÝÕý¶ÔµÄ¶¨Òå½â´ð£»
£¨2£©Çó³ö0¶ÈºÍ180¶ÈʱµÈÑüÈý½ÇÐε׺ÍÑüµÄ±È¼´¿É£»
£¨3£©×÷³öÖ±½Ç¡÷ABC£¬¹¹ÔìµÈÑüÈý½ÇÐÎACD£¬¸ù¾ÝÕý¶ÔµÄ¶¨Òå½â´ð£®
£¨2£©Çó³ö0¶ÈºÍ180¶ÈʱµÈÑüÈý½ÇÐε׺ÍÑüµÄ±È¼´¿É£»
£¨3£©×÷³öÖ±½Ç¡÷ABC£¬¹¹ÔìµÈÑüÈý½ÇÐÎACD£¬¸ù¾ÝÕý¶ÔµÄ¶¨Òå½â´ð£®
½â´ð£º½â£º£¨1£©¸ù¾ÝÕý¶Ô¶¨Ò壬
µ±¶¥½ÇΪ60¡ãʱ£¬µÈÑüÈý½ÇÐε׽ÇΪ60¡ã£¬
ÔòÈý½ÇÐÎΪµÈ±ßÈý½ÇÐΣ¬
Ôòsad60¡ã=
=1£®
¹Ê´ð°¸Îª£º1£®
£¨2£©µ±¡ÏA½Ó½ü0¡ãʱ£¬sadA½Ó½ü0£¬
µ±¡ÏA½Ó½ü180¡ãʱ£¬µÈÑüÈý½ÇÐεĵ׽ӽüÓÚÑüµÄ¶þ±¶£¬¹ÊsadA½Ó½ü2£®
ÓÚÊÇsadAµÄȡֵ·¶Î§ÊÇ0£¼sadA£¼2£®
¹Ê´ð°¸Îª0£¼sadA£¼2£®
£¨3£©Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬sin¡ÏA=
£®
ÔÚABÉÏÈ¡µãD£¬Ê¹AD=AC£¬Á¬½ÓCD£¬×÷DH¡ÍAC£¬HΪ´¹×㣬ÁîBC=3k£¬AB=5k£¬
ÔòAD=AC=
=4k£¬
ÓÖÔÚ¡÷ADHÖУ¬¡ÏAHD=90¡ã£¬sinA=
£®
¡àDH=ADsinA=
k£¬AH=
=
k£®
ÔòÔÚ¡÷CDHÖУ¬CH=AC-AH=
k£¬CD=
=
k£®
ÓÚÊÇÔÚ¡÷ACDÖУ¬AD=AC=4k£¬CD=
k£®
ÓÉÕý¶ÔµÄ¶¨Òå¿ÉµÃ£ºsadA=
=
£®
µ±¶¥½ÇΪ60¡ãʱ£¬µÈÑüÈý½ÇÐε׽ÇΪ60¡ã£¬
ÔòÈý½ÇÐÎΪµÈ±ßÈý½ÇÐΣ¬
Ôòsad60¡ã=
| 1 |
| 1 |
¹Ê´ð°¸Îª£º1£®
£¨2£©µ±¡ÏA½Ó½ü0¡ãʱ£¬sadA½Ó½ü0£¬
µ±¡ÏA½Ó½ü180¡ãʱ£¬µÈÑüÈý½ÇÐεĵ׽ӽüÓÚÑüµÄ¶þ±¶£¬¹ÊsadA½Ó½ü2£®
ÓÚÊÇsadAµÄȡֵ·¶Î§ÊÇ0£¼sadA£¼2£®
¹Ê´ð°¸Îª0£¼sadA£¼2£®
£¨3£©Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬sin¡ÏA=
| 3 |
| 5 |
ÔÚABÉÏÈ¡µãD£¬Ê¹AD=AC£¬Á¬½ÓCD£¬×÷DH¡ÍAC£¬HΪ´¹×㣬ÁîBC=3k£¬AB=5k£¬
ÔòAD=AC=
| (5k)2-(3k)2 |
ÓÖÔÚ¡÷ADHÖУ¬¡ÏAHD=90¡ã£¬sinA=
| 3 |
| 5 |
¡àDH=ADsinA=
| 12 |
| 5 |
| AD2-DH2 |
| 16 |
| 5 |
ÔòÔÚ¡÷CDHÖУ¬CH=AC-AH=
| 4 |
| 5 |
| DH2+CH2 |
4
| ||
| 5 |
ÓÚÊÇÔÚ¡÷ACDÖУ¬AD=AC=4k£¬CD=
4
| ||
| 5 |
ÓÉÕý¶ÔµÄ¶¨Òå¿ÉµÃ£ºsadA=
| CD |
| AD |
| ||
| 5 |
µãÆÀ£º´ËÌâÊÇÒ»µÀж¨ÒåµÄÌâÄ¿£¬¿¼²éÁËÕý¶ÔÕâÒ»ÐÂÄÚÈÝ£¬ÒªÊìϤÈý½Çº¯ÊýµÄ¶¨Ò壬¿É½øÐÐÀà±È½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿