题目内容
分解因式:-9= .
已知:如图①、②,解答下面各题:
(1)图①中,∠AOB=55°,点P在∠AOB内部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,求∠EPF的度数.
(2)图②中,点P在∠AOB外部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,那么∠P与∠O有什么关系?为什么?
(3)通过上面这两道题,你能说出如果一个角的两边分别垂直于另一个角的两边,则这两个角是什么关系?(说明结果,不需要过程)
(4)如果一个角的两边分别平行于另一个角的两边,则这两个角是什么关系?(请画图说明结果,不需要过程)
如果,那么=__________,=_____________.
阅读对话,解答问题.
(1)分别用、表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(,) 的所有取值;
(2)求点(,)在一次函数图像上的概率.
若关于的分式方程的解为正数,则的取值范围_ .
如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是( )
A. 3 B. 4 C. 5 D. 6
规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.
例如:因为23=8,所以(2,8)=3.
(1)根据上述规定,填空:
(3,27)=_______,(5,1)=_______,(2,)=_______.
(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:
设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n
所以3x=4,即(3,4)=x,
所以(3n,4n)=(3,4).
请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)
下列四个等式从左到右的变形,是多项式的因式分解的是( )
A. B.
C. D.
如图,已知点A在反比例函数上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E,若△BCE的面积为8。
(1)求证:△EOB∽△ABC;
(2)求反比例函数的解析式。