题目内容
如图,△ABC中∠A=40°,AB=AC,D为△ABC内的一点,且∠DCA=∠DBC,则∠BDC=
- A.120°
- B.110°
- C.130°
- D.100°
B
分析:由题意,推出∠ABD=∠DCB,推出∠BDC=40°+∠ABD+∠ACD,即∠BDC=40°+∠DCB+∠DBC,即可推出∠BDC=110°.
解答:∵∠A=40°,AB=AC,∠DCA=∠DBC,
∴∠ABD=∠DCB,
∴∠BDC=40°+∠ABD+∠ACD,即∠BDC=40°+∠DCB+∠DBC,
∵∠ABD+∠ACD=180°-∠BDC,
∴∠BDC=110°.
故选择B.
点评:本题主要考查等腰三角形的性质、关键在于根据已知推出∠ABD=∠DCB,∠BDC=40°+∠ABD+∠ACD.
分析:由题意,推出∠ABD=∠DCB,推出∠BDC=40°+∠ABD+∠ACD,即∠BDC=40°+∠DCB+∠DBC,即可推出∠BDC=110°.
解答:∵∠A=40°,AB=AC,∠DCA=∠DBC,
∴∠ABD=∠DCB,
∴∠BDC=40°+∠ABD+∠ACD,即∠BDC=40°+∠DCB+∠DBC,
∵∠ABD+∠ACD=180°-∠BDC,
∴∠BDC=110°.
故选择B.
点评:本题主要考查等腰三角形的性质、关键在于根据已知推出∠ABD=∠DCB,∠BDC=40°+∠ABD+∠ACD.
练习册系列答案
相关题目