题目内容

22、已知,△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移,如图1,当点E与点B重合时,点A恰好落在三角形的斜边DF上.
(1)利用图1证明:EF=2BC;
(2)在三角板的平移过程中,在图2中线段EB=AH是否始终成立(假定AB,AC与三角板斜边的交点为G、H)?如果成立,请证明;如果不成立,请说明理由?
分析:(1)根据等边三角形的性质,得∠ACB=60°,AC=BC.结合三角形外角的性质,得∠CAF=60°-30°=30°,则CF=AC,从而证明结论;
(2)根据(1)中的证明方法,得到CH=CF.根据(1)中的结论,知BE+CF=AC,从而证明结论.
解答:解:(1)∵△ABC是等边三角形,
∴∠ACB=60°,AC=BC.
∵∠F=30°
∴∠CAF=60°-30°=30°.
∴∠CAF=∠F,
∴CF=AC,
∴CF=AC=EC,
∴EF=2BC.(4分)

(2)成立.       (1分)
根据(1)中证CF=AC的方法,同理,得CH=CF.
∵EF=2BC,
∴BE+CF=BC.
又∵AH+CH=AC,AC=BC,
∴AH=BE.(9分)
点评:此题综合运用了等边三角形的性质、三角形的外角性质以及等腰三角形的判定及性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网