题目内容
使代数式有意义的自变量x的取值范围是( )
A. x≥3 B. x>3且x≠4 C. x≥3且x≠4 D. x>3
小明遇到下面的问题:求代数式的最小值并写出取到最小值时的x值.经过观察式子结构特征,小明联想到可以用解一元二次方程中的配方法来解决问题,具体分析过程如下:
,所以,当x=1 时,代数式有最小值是-4.
(1)请你用上面小明思考问题的方法解决下面问题.
① 的最小值是_______;②求的最小值.
(2)小明受到上面问题的启发,自己设计了一个问题,并给出解题过程及结论如下:
问题:当x为实数时,求的最小值.
【解析】,∴原式有最小值是5.
请你判断小明的结论是否正确,并简要说明理由.
判断:__________,理由:____________________________________________________.
如图,数轴上A、B、C三点所表示的数分别是a,6,c,已知AB=8,a+c=0,且c是关于x的方程(m-4)x+16=0的一个解,则m的值为( )
A. -4 B. 2 C. 4 D. 6
函数的自变量x的取值范围是_________。
如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于( )
A. 2cm B. 3cm C. 4cm D. 5cm
一次函数的图象经过点(-2,3)与(1,-1),求它的解析式.
化简:(-)--|-3|=____.
如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C顺时针旋转90°至CE,连接AE.
(1)连接ED,若CD=,AE=4,求AB的长;
(2)如图2,若点F为AD的中点,连接EB、CF,求证:CF⊥EB.
我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,那么可列方程组为( )
A. B.
C. D.