题目内容
【题目】某校为进一步推进“一校一球队、一级一专项、一人一技能”的体育活动,决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图).
![]()
(1)该班对足球和排球感兴趣的人数分别是 、 ;
(2)若该校共有学生3500名,请估计有多少人选修足球?
(3)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.
【答案】(1)20、12;(2)1400;(3)![]()
【解析】试题分析:(1)先利用B的人数和所占的百分比计算出全班人数,再利用C、E的百分比计算出C、E的人数,则用全班人数分别减去B、C、D、E的人数得到A的人数;
(2)根据样本估计总体,用3500乘以样本中足球人数所占比例即可得到选修足球的人数;
(3)先利用树状图展示所有20种等可能的结果数,找出选出的2人恰好1人选修篮球,1人选修足球所占结果数,然后根据概率公式求解.
试题解析:解:(1)∵该班人数为8÷16%=50(人),∴C的人数=24%×50=12(人),E的人数=8%×50=4(人),∴A的人数=50﹣8﹣12﹣4﹣6=20(人).故答案为:20、12;
(2)3500×
=1400(人).
答:估计有1400人选修足球;
(3)画树状图:
![]()
共有20种等可能的结果数,其中选出的2人恰好1人选修篮球,1人选修足球占6种,所以选出的2人恰好1人选修篮球,1人选修足球的概率=
=
.
练习册系列答案
相关题目