题目内容
已知△ABC,分别以AC和BC为直径作半圆O1,O2,P是AB的中点,
(1)如图1,若△ABC是等腰三角形,且AC=BC,在
,
上分别取点E、F,使∠AO1E=∠BO2F,则有结论①△PO1E≌△FO2P,②四边形PO1CO2是菱形,请给出结论②的证明;
(2)如图2,若(1)中△ABC是任意三角形,其他条件不变,则(1)中的两个结论还成立吗?若成立,请给出证明;
(3)如图3,若PC是⊙O1的切线,求证:AB2=BC2+3AC2.
解:(1)∵P、O1、O2分别为AB、AC、BC的中点,
∴AP=BP,AO1=BO2,PO1
BC,PO2
AC,
∴四边形PO1CO2是平行四边形,
∵AC=BC,∴PO1=PO2,
∴四边形PO1CO2是菱形;

(2)∵P为AB中点,∴AP=BP,
又O1为AC中点,∴O1P为△ABC的中位线,
∴O1P=O2B=
BC,同理可得O2P=AO1=
AC,
∴△AO1P≌△BO2P(SSS),
∴∠AO1P=∠BO2P,又∠AO1E=∠BO2F,
∴∠AO1P+∠AO1E=∠BO2P+∠BO2F,即∠PO1E=∠FO2P,
又∵O1A=O1E=O2P,且PO1=BO2=FO2,
∴△PO1E≌△FO2P;
但四边形PO1CO2不是菱形;
(3)Rt△APC中,设AP=c,AC=a,PC=b,
∴c2=a2+b2;AB2=4c2=4(a2+b2),
过点B作AC的垂线,交AC的延长线于D点.
∴CD=a,BD=2b,BC2=a2+4b2,
∴BC2+3AC2=a2+4b2+3a2=4(a2+b2),
∴AB2=BC2+3AC2.
分析:(1)可证明△APO1与△BPO2全等,则∠AO1P=∠BO2P,再根据已知可得出EO1=FO2,PO1=PO2,则△PO1E≌△FO2P,可先证明四边形PO1CO2是平行四边形,再证明CO1=CO2,即可得出四边形PO1CO2是菱形;
(2)由已知得出①成立,而②只是平行四边形;
(3)直角三角形APC中,设AP=c,AC=a,PC=b,则c2=a2+b2;AB2=4c2=4(a2+b2),过点B作AC的垂线,交AC的延长线于D点.则CD=a,BD=2b.BC2=a2+4b2,由此得证.
点评:本题综合考查了圆与全等的有关知识;利用中位线定理及构造三角形全等,利用全等的性质解决相关问题是解决本题的关键.
∴AP=BP,AO1=BO2,PO1
∴四边形PO1CO2是平行四边形,
∵AC=BC,∴PO1=PO2,
∴四边形PO1CO2是菱形;
(2)∵P为AB中点,∴AP=BP,
又O1为AC中点,∴O1P为△ABC的中位线,
∴O1P=O2B=
∴△AO1P≌△BO2P(SSS),
∴∠AO1P=∠BO2P,又∠AO1E=∠BO2F,
∴∠AO1P+∠AO1E=∠BO2P+∠BO2F,即∠PO1E=∠FO2P,
又∵O1A=O1E=O2P,且PO1=BO2=FO2,
∴△PO1E≌△FO2P;
但四边形PO1CO2不是菱形;
(3)Rt△APC中,设AP=c,AC=a,PC=b,
∴c2=a2+b2;AB2=4c2=4(a2+b2),
过点B作AC的垂线,交AC的延长线于D点.
∴CD=a,BD=2b,BC2=a2+4b2,
∴BC2+3AC2=a2+4b2+3a2=4(a2+b2),
∴AB2=BC2+3AC2.
分析:(1)可证明△APO1与△BPO2全等,则∠AO1P=∠BO2P,再根据已知可得出EO1=FO2,PO1=PO2,则△PO1E≌△FO2P,可先证明四边形PO1CO2是平行四边形,再证明CO1=CO2,即可得出四边形PO1CO2是菱形;
(2)由已知得出①成立,而②只是平行四边形;
(3)直角三角形APC中,设AP=c,AC=a,PC=b,则c2=a2+b2;AB2=4c2=4(a2+b2),过点B作AC的垂线,交AC的延长线于D点.则CD=a,BD=2b.BC2=a2+4b2,由此得证.
点评:本题综合考查了圆与全等的有关知识;利用中位线定理及构造三角形全等,利用全等的性质解决相关问题是解决本题的关键.
练习册系列答案
相关题目