题目内容
23、已知△ABC,分别以AB、BC、CA为边向形外作等边三角形ABD、等边三角形BCE、等边三角形ACF.
(1)如图,当△ABC是等边三角形时,请你写出满足图中条件,四个成立的结论;
(2)如图,当△ABC中只有∠ACB=60°时,请你证明S△ABC与S△ABD的和等于S△BCE与S△ACF的和.
(1)如图,当△ABC是等边三角形时,请你写出满足图中条件,四个成立的结论;
(2)如图,当△ABC中只有∠ACB=60°时,请你证明S△ABC与S△ABD的和等于S△BCE与S△ACF的和.
分析:(1)由等边三角形的性质可写出结论.
(2)要证明以上结论,需创造一些条件,首先可从△ABC中分出一部分使得与△ACF的面积相等,则过A作AM∥FC交BC于M,连接DM、EM,就可创造出这样的条件,然后再证其它的面积也相等即可.
(2)要证明以上结论,需创造一些条件,首先可从△ABC中分出一部分使得与△ACF的面积相等,则过A作AM∥FC交BC于M,连接DM、EM,就可创造出这样的条件,然后再证其它的面积也相等即可.
解答:解:(1)DE=EF,DF=EF,∠D=∠E=∠F,A、B、C分别为DF、DE、EF的中点.
(2)过A作AM∥FC交BC于M,连接DM、EM,
∵∠ACB=60°,∠CAF=60°,
∴∠ACB=∠CAF.
∴AF∥MC.
∴四边形AMCF是平行四边形.
又∵FA=FC,
∴四边形AMCF是菱形.
∴AC=CM=AM,且∠MAC=60°.
∵在△BAC与△EMC中,
CA=CM,∠ACB=∠MCE,CB=CE,
∴△BAC≌△EMC.
∴DM=BC.
∴DM=EB,DB=EM.
∴四边形DBEM是平行四边形.
∴S△BDM+S△DAM+S△MAC=S△BEM+S△EMC+S△ACF
即S△ABC+S△ABD=S△BCE+S△ACF.
∵∠ACB=60°,∠CAF=60°,
∴∠ACB=∠CAF.
∴AF∥MC.
∴四边形AMCF是平行四边形.
又∵FA=FC,
∴四边形AMCF是菱形.
∴AC=CM=AM,且∠MAC=60°.
∵在△BAC与△EMC中,
CA=CM,∠ACB=∠MCE,CB=CE,
∴△BAC≌△EMC.
∴DM=BC.
∴DM=EB,DB=EM.
∴四边形DBEM是平行四边形.
∴S△BDM+S△DAM+S△MAC=S△BEM+S△EMC+S△ACF
即S△ABC+S△ABD=S△BCE+S△ACF.
点评:本题主要考查等边三角形的性质及平行四边的判定和全等三角形的判定,难度很大,有利于培养同学们钻研和探索问题的精神.
练习册系列答案
相关题目