题目内容

如图,在△ABC中,AB=AC=12,BC=8,D为AB的中点,点P在线段BC上以每秒2个单位的速度由B点向C点运动,同时,点Q在线段CA上以每秒x个单位的速度由C点向A点运动.当△BPD与以C、Q、P为顶点的三角形全等时,x的值为
 
考点:全等三角形的判定
专题:动点型
分析:求出BD,根据全等得出要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16-4x或4x=16-4x,求出方程的解即可.
解答:解:设经过t秒后,使△BPD与△CQP全等,
∵AB=AC=12,点D为AB的中点,
∴BD=6,
∵∠ABC=∠ACB,
∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,
即6=8-2t或2t=8-2t,
t1=1,t2=2,
t=1时,BP=CQ=2,2÷1=2;
t=2时,BD=CQ=6,6÷2=3;
即点Q的运动速度是2或3,
故答案为:2或3.
点评:本题考查了全等三角形的判定的应用,关键是能根据题意得出方程.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网