题目内容

如图,已知∠1=∠B,∠D=50°,求∠C的度数.请阅读下面的解答过程,并填空(理由或数学式).
解:∵∠1=∠B
(已知)
(已知)

∴AD∥
BC
BC

∴∠D+∠C=
180
180
°
(两直线平行,同旁内角互补)
(两直线平行,同旁内角互补)

∵∠D=50°(已知)
∴∠C=
130
130
°(等式的性质).
分析:根据同位角相等,两直线平行由∠1=∠B得到AD∥BC,再根据平行线的性质得∠D+∠C=180°,然后把∠D=50°代入计算即可.
解答:解:∵∠1=∠B,
∴AD∥BC,
∴∠D+∠C=180°,
∵∠D=50°,
∴∠C=130°.
故答案为(已知),BC,180,(两直线平行,同旁内角互补),130.
点评:本题考查了平行线的判定与性质:同位角相等,两直线平行;两直线平行,同旁内角互补.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网