题目内容


如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB

(1)求证:BC是⊙O的切线;

(2)连接AF、BF,求∠ABF的度数;

(3)如果CD=15,BE=10,sinA=,求⊙O的半径.


(1)证明:连接OB

∵OB=OA,CE=CB,

∴∠A=∠OBA,∠CEB=∠ABC

又∵CD⊥OA

∴∠A+∠AED=∠A+∠CEB=90°

∴∠OBA+∠ABC=90°

∴OB⊥BC

∴BC是⊙O的切线.

(2)解:如图1,连接OF,AF,BF,

∵DA=DO,CD⊥OA,

∴AF=OF,

∵OA=OF,

∴△OAF是等边三角形,

∴∠AOF=60°

∴∠ABF=∠AOF=30°;

(3)解:如图2,过点C作CG⊥BE于G,

∵CE=CB,

∴EG=BE=5,

∵∠ADE=∠CGE=90°,∠AED=∠GEC,

∴∠GCE=∠A,

∴△ADE∽△CGE,

∴sin∠ECG=sin∠A=

在RtECG中,

∵CG==12,

∵CD=15,CE=13,

∴DE=2,

∵△ADE∽△CGE,

∴AD=,CG=

∴⊙O的半径OA=2AD=


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网