题目内容

如图,在平面直角坐标系中,矩形ABCD的边与坐标轴平行或垂直,顶点A、C分别在函数的图象的两支上,则图中两块阴影部分的面积的乘积等于   
【答案】分析:设A(a,b)C(c,d),则ab=cd=2,根据矩形性质,得B(c,b),D(a,d),两块阴影部分的面积的乘积表示为(-c)•b•a•(-d)=abcd,即可求解.
解答:解:依题意,设A(a,b)C(c,d),
∵A、C两点在函数的图象上,
∴ab=cd=2,由矩形性质,得B(c,b),D(a,d),
根据矩形面积公式,两块阴影部分的面积的乘积表示为
(-c)•b•a•(-d)=abcd=2×2=4.
故答案为:4.
点评:本题考查了反比例函数系数的几何意义,矩形的性质及面积计算方法.关键是通过设点的坐标,表示矩形的面积.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网