题目内容
如图,在¨ABCD中,过点D作DE⊥AB与点E,点F在边CD上,DF=BE,连接AF,BF
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
有理数,在数轴上的位置如图所示:化简:
如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是 .
已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.
(1)求证:AE=EC;
(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.
如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点, 过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)求证:四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCF的面积.
水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为___.
观察如图所示的图形,并阅读相关文字信息后回答下列问题:
2条直线相交,最多有1个交点;3条直线相交,最多有3个交点;4条直线相交,最多有6个交点.
(1)8条直线相交,最多有几个交点?
(2)设有n条直线相交,最多有y个交点,请用含n的代数式表示y.
(3)当最多交点个数为4950时,此时直线有几条?
已知正六边形ABCDEF在直角坐标系内的位置如图所示,点A(-2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转.若每次翻转60°,则经过2017次翻转之后,点B的坐标为________.