题目内容
若关于x的方程的解是关于x的方程的解,求a的取值范围.
解:∵3(x+4)=2a+5,
∴;
∵,
∴,
解得.
【难度】较难
已知4x2mym+n与﹣3x6y2是同类项,则mn=__________.
﹣24÷|1﹣(﹣3)2|﹣2×(﹣1)2015
去年以来,我国中东部地区持续出现雾霾天气.我市某记者为了了解“雾霾天气的主要成因”,随机调查了部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计表:
请根据图表中提供的信息解答下列问题:
(1)填空:m= ,n= ,扇形统计图中E组所占的百分比为 ;
(2)若该市人口约有75万人,请你估计其中持D组“观点”的市民人数;
(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?
某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7000 元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元.
(1)每合电脑机箱、液晶显示器的进价各是多少元?
(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?
某校七(2)班40名同学为“希望工程”捐款,共捐款100元。捐款情况如下表:
表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,不过应用方程组可以解决这个问题。现在设捐款2元的有名同学,捐款3元的有名同学,请你列方程组并解出方程组。
如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.
(1)求线段MN的长;
(2)若C为线段AB上任意一点,满足AC+CB=acm,其他条件不变,你能猜想MN的长度吗?并说明理由。
(3)若C在AB的延长线上,且满足AC-CB=bcm,其他条件不变, MN的长度为多少?