题目内容
如图所示,已知直线AB,CD,EF相交于点O,AB⊥CD,∠DOE=145°,则∠COE=________,∠AOF=________.
物体从高处自由下落,下落的高度h与下落时间t之间的关系可用公式表示,其中g=10米/秒2,若物体下落的高度是180米,则下落的时间是多少秒?
如图所示,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=________.
如图所示,∠A=∠ACE,∠B=∠BDF,若要CE∥DF,∠A与∠B应满足怎样的条件?试说明理由.
如图所示,将长方形纸片折叠,使点A落在点A′处,BC为折痕,BD是∠A′BE的平分线,试求∠CBD的度数.
如图所示,直线AB,CD,EF相交于点O,且AB⊥CD于点O,∠BOE=70°,则∠FOD等于( )
A.10°
B.20°
C.30°
D.70°
如图所示,已知l1,l2,l3相交于点O,∠1=∠2,∠3︰∠1=8︰1,求∠4的度数.
如图,⊙M与x轴交于A、B两点,其坐标分别为、,直径CD⊥x轴于N,抛物线经过A、B、D三点,
(1)求m的值及点D的坐标.
(2)若直线CE切⊙M于点C,G在直线CE上,已知点G的横坐标为3.求G的纵坐标
(3)对于(2)中的G,是否存在过点G的直线,使它与(1)中抛物线只有一个交点,请说明理由.
(4)对于(2)中的G 直线FG切⊙M于点F,求直线DF的解析式.
已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是( )
A.选①② B.选②③ C.选①③ D.选②④