题目内容
已知⊙O的直径AB=2,弦AD=
,点C为⊙O上一点,∠CAD=15°,则sin∠CAB=________.
分析:存在两种情况,如图,C1、C2,根据题意,可得到AD=BD,即∠DAB=45°,求出∠CAB的度数即可解答.
解答:
∵直径AB=2,弦AD=
∴AD=BD=
∴∠DAB=45°,又∠CAD=15°,
∴∠C1AB=60°,
∠C2AB=30°,
∴sin∠CAB=
故答案为:
点评:本题主要考查了特殊角的三角函数值,注意本题分两种情况解答.
练习册系列答案
相关题目