题目内容
如图所示,在正方形ABCD中,M为AB的中点,N为AD上的一点,且AN=
AD,试猜测△CMN是什么三角形,请证明你的结论.
![]()
解:猜想△CMN是直角三角形.
设正方形ABCD的边长为4a,
则AM=2a,AN=a,DN=3a.
在Rt△AMN中
由勾股定理得,MN2=5a2.同理可得CN2=25a2,
CM2=20a2.
所以MN2+CM2=CN2.
所以△CMN是直角三角形.
练习册系列答案
相关题目
甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字
的个数统计结果如下表:
| 班级 | 参赛人数 | 中位数 | 方差 | 平均字数 |
| 甲 | 55 | 149 | 191 | 135 |
| 乙 | 55 | 151 | 110 | 135 |
某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是__________(把你认为正确结论的序号都填上).